## SYLLABUS Fall semester 2020-2021 academic years on the educational program "8D06104 - Mathematical and Computer Modeling"

| Discipline's        | Discipline's title                                                                                                                                                                                | Indepen                              | No. of l            | nours per wo    | ek                             |                                    | Numbe               | Independe             | ent work of student with |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-----------------|--------------------------------|------------------------------------|---------------------|-----------------------|--------------------------|--|--|
| code                |                                                                                                                                                                                                   | dent<br>work of<br>students<br>(IWS) | Lectu<br>res<br>(L) | Practical<br>(P |                                | Labora<br>tory<br>(Lab)            | r of<br>credits     | tı                    | eacher (IWST)            |  |  |
| MMNFP<br>7201       | Mathematical<br>modeling of<br>nonstationary<br>physical<br>processes                                                                                                                             | 98                                   | 15                  | 1:              | 5                              | 15                                 | 5                   |                       | 5                        |  |  |
|                     |                                                                                                                                                                                                   |                                      |                     | Academic co     | ourse infor                    | nation                             |                     |                       |                          |  |  |
| Form of education   | Type of course                                                                                                                                                                                    | Types                                | of lectur           | es Ty           | pes of prac<br>training        | tical                              | Number<br>of IWS    | Form of final control |                          |  |  |
| online              | theoretical                                                                                                                                                                                       |                                      | alitical            |                 | Task solution                  | on                                 | 6                   | 6 writing             |                          |  |  |
| Lecturer            | Abdibekov Ualik                                                                                                                                                                                   | han Seidile                          | laevich             |                 |                                |                                    |                     |                       |                          |  |  |
| e-mail              | uali@kaznu.kz                                                                                                                                                                                     |                                      |                     |                 |                                |                                    | Scheduled           |                       |                          |  |  |
| Telephone<br>number |                                                                                                                                                                                                   | 2211589                              |                     |                 |                                |                                    |                     |                       |                          |  |  |
|                     |                                                                                                                                                                                                   |                                      |                     | tation of the   | course                         |                                    |                     |                       |                          |  |  |
| Aim of<br>course    | Expected Learning Outcomes (LO)       Indicators of LO achievement (ID)         As a result of studying the discipline the undergraduate will be able to:       Indicators of LO achievement (ID) |                                      |                     |                 |                                |                                    |                     |                       |                          |  |  |
|                     | LO 1. Description mathematical equa                                                                                                                                                               |                                      | lent pro            | ocesses by      |                                | ID.1 numerical method construction |                     |                       |                          |  |  |
|                     | LO 2. Construction the process                                                                                                                                                                    | of a math                            | ematica             | l model of      |                                | onstructi                          | acting an algorithm |                       |                          |  |  |
|                     | LO 3. Selection of c                                                                                                                                                                              | losure met                           | hods                |                 | ID. 3constructing an algorithm |                                    |                     |                       |                          |  |  |

|                          | LO 4. Construction of a mathematical model of<br>turbulent flow for large Reynolds numbers ID. 4compiling program code                                                                    |  |  |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                          | As a result of studying the discipline, the doctoral candidate will be able to independently understand scientific articles and independently build models for turbulent flow             |  |  |  |  |  |  |  |  |  |  |
| Prerequisi<br>tes        | Mathematical and computer modeling of physical proces, continuum mechanics, mechanic of fluid, computational fluid dynamic                                                                |  |  |  |  |  |  |  |  |  |  |
| Post<br>requisites       |                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| Informatio               | literature:                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| n<br>resources           | 1. Монин А.С., Яглом А.М. Статистическая гидромеханика М.:Наука, 1965 Ч. 1, - 676 с.                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| resources                | 2. Монин А.С., Яглом А.М. Статистическая гидромеханика М.:Наука, 1965 Ч. 2 - 686 с.                                                                                                       |  |  |  |  |  |  |  |  |  |  |
|                          | 3. Хинце И.О. Турбулентность. М.: Физматгиз, 1963 680 с.                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                          | 4. Турбулентность. Принципы и применения М.: Мир, 1980 535 с.                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|                          | 5. Методы расчета турбулентных течений М.: Мир, 1984464 с.                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|                          | <ol> <li>Davidson P.A. Turbulense. An Introduction for Scientists and Engineers, OXFORD University Press<br/>2004. – 678 p.</li> </ol>                                                    |  |  |  |  |  |  |  |  |  |  |
|                          | <ol> <li>P.Sagaut,S.Deck,M.Terracol_Multiscale_and_Multiresolution_Approaches_in_Turbulence_Imperial<br/>College Press 2006. – 356 p.</li> </ol>                                          |  |  |  |  |  |  |  |  |  |  |
|                          | 8. Жумагулов Б.Т., Абдибеков У.С., Исахов А.А. Основы математического и компьютерного                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|                          | моделирования естественно-физических процессов. Алматы, Қазақ университеті, 2014, -206 стр.                                                                                               |  |  |  |  |  |  |  |  |  |  |
|                          | <b>Internet-resources:</b> Additional educational material, lecture and practical classes, CDS assignments are uploaded to the teaching materials section of the univer.kaznu.kz website. |  |  |  |  |  |  |  |  |  |  |
| Academic                 | Academic Behavior Rules:                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| policy of<br>the         | All students have to register at the MOOC. The deadlines for completing the modules of the online course must be strictly observed in accordance with the discipline study schedule.      |  |  |  |  |  |  |  |  |  |  |
| course in                | ATTENTION! Non-compliance with deadlines leads to loss of points! The deadline of each task is indicated in the                                                                           |  |  |  |  |  |  |  |  |  |  |
| the                      | calendar (schedule) of implementation of the content of the curriculum, as well as in the MOOC.                                                                                           |  |  |  |  |  |  |  |  |  |  |
| context of<br>university | Academic values:<br>- Practical trainings/laboratories, IWS should be independent, creative.                                                                                              |  |  |  |  |  |  |  |  |  |  |

| moral      | - Plagiarism, forgery, cheating at all stages of control are unacceptable.                                           |
|------------|----------------------------------------------------------------------------------------------------------------------|
| and        | - Students with disabilities can receive counseling at e-mail uali@kaznu.kz                                          |
| ethical    |                                                                                                                      |
| values     |                                                                                                                      |
| Evaluatio  | Criteria-based evaluation:                                                                                           |
| n and      | assessment of learning outcomes in relation to descriptors (verification of the formation of competencies in midterm |
| attestatio | control and exams).                                                                                                  |
| n policy   | Summative evaluation: assessment of work activity in an audience (at a webinar); assessment of the completed task.   |

## Calendar (schedule) the implementation of the course content:

| Week /<br>date | Topic title (lectures, practical classes, Independent work of students, IWS) | LO            | ID           | Number<br>of hours | Maximu<br>m score | Form<br>of<br>Knowl<br>edge<br>Assess<br>ment | The<br>Form of<br>the<br>lesson<br>/<br>platform |
|----------------|------------------------------------------------------------------------------|---------------|--------------|--------------------|-------------------|-----------------------------------------------|--------------------------------------------------|
|                | Module 1. Modeling the problems of th                                        | e atmosphe    | ere and ocea | n.                 |                   |                                               |                                                  |
| 1              | Lecture 1. The mathematical modeling physical prosesses.<br>Introduction.    | LO.1-<br>LO.4 | ID.1-ID.4    | 1                  |                   |                                               | Video<br>lecture<br>in MS<br>Teams               |
|                | Practical class 1. Related exercises                                         | LO.1-<br>LO.4 | ID.1-ID.4    | 2                  | 6                 |                                               |                                                  |
| 2              | Lecture 2. Mathematical modeling of atmospheric processes                    | LO.1-<br>LO.4 | ID.1-ID.4    | 1                  |                   |                                               | Video<br>lecture<br>in MS<br>Teams               |
|                | Practical class 2. Related exercises                                         | LO.1-<br>LO.4 | ID.1-ID.4    | 2                  | 6                 |                                               | Webinar<br>in MS<br>Teams                        |
| 3              | Lecture 3. Mathematical modeling of pollution of oceans and seas.            | LO.1-         | ID.1-ID.4    | 1                  |                   |                                               | Video<br>lecture                                 |

| 7 | Lecture 7. Mathematical modeling of the hydrodynamics of aluminum electrolyzers | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture                   |
|---|---------------------------------------------------------------------------------|---------------|-----------|---|----------|------------------------------------|
|   | Practical class 6. Related exercises                                            | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
| 6 | Lecture 6. Mathematical modeling of near space.                                 | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|   | Module 2. Modeling complex p                                                    | hysical pro   | ocesses   |   |          |                                    |
|   | MT 1                                                                            |               |           |   | 100      |                                    |
|   | Independent work of student with teacher: IWST.                                 |               |           |   | 30       |                                    |
|   | Practical class 5. Related exercises                                            | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
| 5 | Lecture 5. Mathematical modeling of tropical cyclones (tornadoes).              | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|   | Practical class 4. Related exercises                                            | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
| 4 | Lecture 4. Mathematical modeling of short-term weather forecast.                | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|   | Independent work of student with teacher: IWST.                                 |               |           |   | 20<br>20 |                                    |
|   | Practical class 3. Related exercises                                            | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
|   |                                                                                 | LO.4          |           |   |          | in MS<br>Teams                     |

|    |                                                                               |               |           |   |          | in MS<br>Teams                     |
|----|-------------------------------------------------------------------------------|---------------|-----------|---|----------|------------------------------------|
|    | Practical class 7. Related exercises                                          | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
| 8  | Lecture 8. Modeling the dynamics of ionospheric plasma                        | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 8. Related exercises.                                         | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
|    | Independent work of student with teacher: IWST.                               |               |           |   | 20<br>20 |                                    |
| 9  | Lecture 9. Mathematical modeling of internal flows.                           | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 9. Related exercises                                          | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
| 10 | Lecture 10. Mathematical modeling of chemical processes in a confined space   | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 10. Related exercises                                         | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6        | Webinar<br>in MS<br>Teams          |
|    | Independent work of student with teacher: IWST.                               |               |           |   | 30       |                                    |
|    | MT (Midterm Exam)                                                             |               |           |   | 100      |                                    |
|    | Module 3. CFD nonstation                                                      | are proce     | sses      |   |          |                                    |
| 11 | Lecture 11. Fractional-Step Methods for three-dimensional parabolic equation. | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |          | Video<br>lecture                   |

|    |                                                                         |               |           |   |    | in MS<br>Teams                     |
|----|-------------------------------------------------------------------------|---------------|-----------|---|----|------------------------------------|
|    | Practical class 11. Related exercises                                   | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6  | Webinar<br>in MS<br>Teams          |
| 12 | Lecture 12. Fourier method for the three-dimensional pressure equation. | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |    | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 12. Related exercises                                   | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6  | Webinar<br>in MS<br>Teams          |
|    | Independent work of student with teacher: IWST.                         |               |           |   | 20 |                                    |
| 13 | Lecture 13. RANS for nonstationare physical processes                   | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |    | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 13. Related exercises                                   | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6  | Webinar<br>in MS<br>Teams          |
| 14 | Lecture 14. A Reynolds stress model for velocity and scalar fields.     | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |    | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 14. Related exercises                                   | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6  | Webinar<br>in MS<br>Teams          |
|    | Independent work of student with teacher: IWST.                         | LO.1-<br>LO.4 | ID.1-ID.4 |   | 25 |                                    |
| 15 | Lecture 15. LES for physical processes.                                 | LO.1-<br>LO.4 | ID.1-ID.4 | 1 |    | Video<br>lecture<br>in MS<br>Teams |
|    | Practical class 15. Related exercises                                   | LO.1-<br>LO.4 | ID.1-ID.4 | 2 | 6  | Webinar<br>in MS                   |

|                                                 |  |     | Teams            |
|-------------------------------------------------|--|-----|------------------|
| Independent work of student with teacher: IWST. |  | 25  | Webinar<br>in MS |
|                                                 |  |     |                  |
|                                                 |  |     | Teams            |
| MT 2                                            |  | 100 |                  |
| Exam                                            |  | 100 |                  |

[Abbreviations: QS - questions for self-examination; TK - typical tasks; IT - individual tasks; CW - control work; MT - midterm. Comments:

- Form of L and PT: webinar in MS Teams / Zoom (presentation of video materials for 10-15 minutes, then its discussion / consolidation in the form of a discussion / problem solving / ...)

- Form of carrying out the CW: webinar (at the end of the course, the students pass screenshots of the work to the monitor, he/she sends them to the teacher) / test in the Moodle DLS.

- All course materials (L, QS, TK, IT, etc.) see here (see Literature and Resources, p. 6).

- Tasks for the next week open after each deadline.

- CW assignments are given by the teacher at the beginning of the webinar.]

Dean

Chairman of the Faculty Methodical Bureau

Head of the Department

Lecturer

